and 10dB bandwidths were, respectively, 80 and 140nm. Out of
the transmission bandwidth, the [TF| dramatically decreases from
~10dB to the minimum accurately measurable value (-50dB)
within ~40nm (i.e. the slope reaches 1dB/nm). The measured val-
ues of the transmission bandwidth are approximately two times
narrower than the computed values. In accordance with theoreti-
cal predictions, this narrowing is attributed to the unexpected
irregularities of the actual index profile. However, the bandwidth
of the manufactured fibre remains large enough for many nonlin-
ear applications. In spite of the noted discrepancy, the spatial fil-
tering behaviour of the fibre around 1060nm is clearly pointed
out. Further measurements are planned with newly manufactured
fibres.

Conclusion: In this Letter, the modulus of the transfer function
(TF|) of a depressed-core-index photonic-bandgap (DCI-PBG)
fibre has been studied both theoretically and experimentally. It has
been shown that the theoretical 3dB bandwidth of 40cm of clad-
ding fibre with seven high index layers, designed for transmission
at 1060nm, is ~150nm. Experimental measurements with a 40cm
piece of manufactured DCI-PBG fibre exhibit a 3dB bandwidth of
80nm around 1080nm. The slope of the [TF| reaches 1dB/nm out
of the transmission bandwidth. The narrower measured band-
width is due to imperfections in the actual profile. However, it
remains large enough for nonlinear applications such as paramet-
ric amplification. Further measurements dealing with chromatic
dispersion, which is supposed to exhibit zero dispersion at the cen-
tral wavelength of the bandwidth, are currently being investigated.
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Hierarchical genetic image segmentation
algorithm based on histogram dichotomy

Hanchuan Peng, Fuhui Long, Zheru Chi,
David Dagan Feng and Wanchi Siu

A new hierarchical distributed genetic algorithm for image
segmentation is proposed based on histogram dichotomy without
an a priori number of image regions. Experimental results show
that the proposed method outperforms the original distributed
genetic algorithm.

Introduction: Image segmentation, one of the most important and
difficult tasks in image/video processing, is the process by which

an image is segmented into a group of non-overlapping homoge-

neous regions. Among various genetic image segmentation meth-
ods [l — 3], the distributed genetic algorithm (DGA) [2, 3] has
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been proposed as a simple but effective technique for parallel and
unsupervised segmentation. Unfortunately, DGA needs the prede-
fined image region number and often produces unpredictable poor
results due to improper initialisation. To improve both segmenta-
tion quality and computational efficiency, in this Letter we pro-
pose a hierarchical distributed genetic algorithm (HDGA), which
consists of two stages: quantisation and segmentation. Based on
hierarchical histogram dichotomy, the stage of image quantisation
utilises the statistical information of the image and provides a rea-
sonable initialisation for the genetic algorithm. Based on the
genetic algorithm, the image segmentation stage explores the spa-
tial connectivity of the image and produces meaningful homogene-
ous regions.

Histogram dichotomy: In image quantisation, the image histogram
is repeatedly dichotomised into hierarchical continuous intervals
until every interval has a pixel-by-pixel mean square error (MSE)
less than a given threshold 7. The histogram MSE on the grey
level interval [d, u] is defined as

oty =Y POk -rwu)? /S P (1)
k=d k=d

where d and u are lower and upper limits of the current histogram
interval, the function P(k) is the normalised greyscale histogram
(ZP(k) = 1), and r is the quantised grey level of the histogram
interval, as defined in eqn. 2:

s = Y. PR/ S PK) @
k=d k=d

When the MSE of a histogram interval is larger than T, this
interval will be split into two subintervals, the MSE sum of which
is minimised, i.e. the interval division point ¢y, is chosen as

Cld,u] = arg min{afd,c] + U?m,u]} 3)

Using the above method, a hierarchical quantisation tree of his-
togram intervals is obtained. Each histogram interval corresponds
to one or more image regions, which have the approximate homo-
geneity in the sense of the minimal MSE. It can be observed that
the sum of interval MSEs in a higher level is always smaller than
that in the lower level. This method is in accordance with the opti-
mal image quantisation method [4]; however, the quantisation tree
enables the quantisation quality to be controlled, without an a priori
number of image regions.

Note that generally there are strong noises in the quantisation
image, especially for slowly varying areas of grey levels. In addi-
tion, the spatial connectivity of an image is not considered in
quantisation. Hence we present the following genetic paradigm.

HDGA. As with the DGA, in HDGA the genetic population is
composed of all pixel chromosomes. However, in contrast to the
DGA, where a chromosome has three parts (pixel grey level, label,
and fitness), in HDGA a pixel chromosome /,,, for the image
pixel (m, n) consists of only two parts: label b, , and fitness S
The chromosome label is defined as the pixel quantisation level
and initialised using the histogram dichotomy results. The chro-
mosome fitness is defined as

fm,n = - bm,n - —'H — Z bp’q
™ PGEQm n,pEMGEN
(1<m<M1<n<N) (4)

where Q,,, is a neighbouring area of the pixel (m, n), H,,, is the
total number of pixels in Q,,,, and M and N are the image width
and height, separately. This new fitness function can better utilise
the spatial connectivity in the input image than the original fitness
function of the DGA [2, 3].

Three revised genetic operations are used in HDGA:
(i) Selection: select the /,, with the greatest fitness Jpq 0 Q,, to
replace /.
(i) Crossover: randomly cross over 1,, and I,,, which has the
greatest fitness f, , in €, ,, and ‘binarise’ the result to be one of
these two parents.
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(iii) Mutation: randomly select one /,, in £, to replace the cur-
rent chromosome /,,,. A small mutation rate r,, is defined.

The whole HDGA process is organised using the above three
genetic operations. In every generation, after all the genetic opera-
tions, the total number of chromosomes that do not change labels
is counted and the unchanged rate r, is calculated. If r, is larger
than a preset threshold 7, in two continuous generations, then the
HDGA stops. Otherwise a new generation begins.

Fig. 1 Segmentation result of HDGA

a Input image
b Edges of HDGA segmentation regions

Experimental results: A computer simulation was carried out on a
database of 1000 images, which belonged to five categories: chil-
dren, men, frame pictures, business goods, fruit and vegetables. In
each category there were 200 true-colour (24-bit) 320 x 240
images. In our experiments each image was converted to a 256
grey level (8-bit) image. For the following results, the HDGA
parameters were T, = 77, T, = 0.9, Q,, , = 3 x 3 neighbourhood of
pixel (m, n), r,, = 0.001. For comparison, DGA’s parameters were
set the same as those of HDGA, or carefully adjusted to the opti-
mum according to [2].

The HDGA and DGA were compared for every image in the
database. For example, for the input image in Fig. 1a, the HDGA
histogram dichotomy produces a quantisation tree, where the his-
togram division point list is “7, 17, 39, 58, 81, 107, 120, 146, 159,
181, 210, 227°. In comparison, the histogram division point list of
the DGA is ‘19, 38, 58, 78, 97, 117, 137, 157, 176, 196, 216, 235’
because the DGA uses uniform quantisation [2]. The image region
edges after HDGA segmentation are shown in Fig. 15. Note that
HDGA effectively makes use of both the image statistical infor-
mation and spatial connectivity. On the contrary, image regions
produced by the DGA (not shown here for reasons of space) are
usually more incoherent and less significant.

In Fig. 2 the convergence of the HDGA and DGA is compared
(for Fig. la). Obviously the HDGA converges much faster than
the DGA. For other images, the HDGA typically needs only ~
about ive generations while the DGA needs ~30-50 generations.
Two possible causes are the better initialisation and improved
genetic algorithm. In addition, even in one generation, the actual
computation required by the HDGA is much less than that
required by the DGA, due to the simplified chromosome structure
and refined genetic operations. Furthermore, in our experiments
(Matlab codes running on a PIII 550 PC machine), the histogram
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dichotomy usually costs ~0.5s, whereas the genetic segmentation
often costs more than 150s. Thus histogram dichotomy is compu-
tationally efficient in the HDGA.

1.0
09
0.8
0.7
0.6
=2 05
0.4

0 L 1 | | | | 1 ]
generation

Fig. 2 Convergence of HDGA and DGA

¢ HDGA .
B DGA

Table 1: Indexes of image segmentation and removing quantisation
noise

s | Ay | SHPCAV pGa)
% %
Children 319.6175 | 401.8327 79.54 42-55
Men 310.6658 | 411.1724 75.56 35-47
Frame pictures 284.7555 | 402.6727 70.72 38-50
Business goods 280.6534 | 369.0727 76.04 44-52
Fruit and vegetables | 310.6988 | 404.2918 76.85 28-42

We quantitatively evaluated the segmentation process by exam-
ining the homogeneity of the final image segmentation regions.
The sum of the MSEs over all regions in a segmented image, i.e.
S = Zo?, was calculated as the index. Better segmentation should
produce smaller S;. The second and third columns of Table 1
show the average results for the HDGA and DGA for the five
image categories. Clearly, the image regions produced by the
HDGA have better internal coherence than those produced by the
DGA. Actually, SJJHDGA] is 20-30% less than Sg[DGA], as indi-
cated by the fourth column of Table 1. We also examined the role
of the genetic algorithm in removing image quantisation noise.
Owing to the difficulty in counting small image regions, an index
of the image region edge pixel reduction rate, r,, was used as an
approximation. The fifth column of Table 1 shows that the total
number of image region edge pixels decreases significantly after
the HDGA. The positive results of r, are mainly due to the disap-
pearance of small noisy regions.

Conclusion: The proposed HDGA can take advantage of statistical
information and spatial information to segment an image. Experi-
mental results show that the HDGA outperforms the DGA in
both computational efficiency and segmentation quality.
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Optical image encryption using
interferometry-based phase masks

Jong-Yun Kim, Se-Joon Park, Cheol-Su Kim,
Jang-Geun Bae and Soo-Joong Kim

A new and simple image encryption scheme and optical decoding
technique are presented based on the principle of interference. An
original image is encoded into two phase-valued images. The
interference image between the two images produces a binary
image, which has a two-level intensity value. The performance of
the proposed technique is evaluated using computer simulations
and optical experiments.

Introduction: Information fraud is a serious problem facing banks,
businesses, and consumers. There is therefore a real need for a fast
and reliable system for the identification of individuals, and verifi-
cation of cards and IDs. Certain opfical processing and pattern
recognition applications have already been proposed for the secu-
rity verification of credit cards, passports, and other forms of bio-
metric image identification [1 — 4]. This Letter presents a new and
simple optical security verification technique based on the princi-
ple of interference. A randomly generated reference image and
encrypted image are made of the original image in the encoding
process using computer processing and lithography. The encoded
image is then decrypted by interfering the two-phase masks in an
interferometer.

Interference between two waves: Let the two plane waves propagat-
ing in the z-direction with the same frequency , wavelength A,
amplitude £, and polarisation be

Ey(z,t) = Epcos(kz — wt)
Es(z,t) = Egcos(kz — wt + 8)' 0))]

"where 8 is the phase difference between the two plane waves, and
k is the propagation constant. The intensity of the superposition
wave of the two waves at an instantaneous time can be written as

I = (E) + Ey)?
= (E1)? + (Es)* + 2(EL Ey)
= 2E3(1 + cosd) (2)

If the phase difference between E; and E, is an even or odd multi-
ple of m, the intensity of the interference pattern assumes a maxi-
mum or minimum value. Accordingly, since the interference
pattern has a two-level intensity value, it can be changed to a
binary image after thresholding. As a result, a certain intensity dis-
tribution can be considered as a combination of a pair of phase
distributions. If one phase distribution out of the pair is known,
the other can be easily determined from the interference intensity
distribution. Finally, the binary intensity image can be represented
by interfering the two phase images. This idea can be applied to
the new encryption of the binary image.

Image encryption based on interferometry: Consider the case where
two phase-only images are placed in each arm of a Mach-Zehnder
interferometer, respectively, and every pixel in the two images has
a phase value of ‘0’ or ‘w’. If two pixels with the same phase value
interfere with each other, the corresponding intensity value will be
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the maximum of ‘1’, and pixels with a different phase value will
result in the minimum value of ‘0’. Therefore, the binary intensity
image can be represented by placing the phase images, which con-
sist of phase values of ‘0" and ‘’, in the two positions where the
optical path difference between the two split waves is an integer
multiple of 2r. The two images are referred to as a reference
image and encoded image. The process of generating the two
phase images is as follows. First, the binary random phase image
for the reference image is generated with values of ‘0’ and ‘m’.

Table 1: Image encryption rule

Original image | Reference image | Encrypted image
(intensity) (phase) (phase)
0 T
0
T 0
1 0 0
n n

Next, the encrypted image is produced based on the proposed
encryption rule in Table 1. For example, suppose the intensity
value of a pixel in the original image is ‘0’, and the phase value of
a corresponding pixel in the reference image is ‘0. The phase
value of the pixel in the encoded image, which interferes with the
pixel in the reference image, should be ‘w’. If the phase value in
the reference image is ‘T, the phase value in the encoded image
should be ‘0. This rule is then applied to all the other pixels,
thereby generating the encrypted image. For example, let the char-
acter ‘T’ be the original image to be encrypted, as shown in
Fig. la. The reference image, which is a random binary phase
image, is shown in Fig. 15 and the image shown in Fig. 1¢ is the
encrypted image of the original image in Fig. la.
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Fig. 1 Generation of encrypted image

a Original image
b Reference image
¢ Encrypted image
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Fig. 2 Optical security system for image decryption

Fig. 3 Optically decrypred image
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